当前位置: 首页 / 成果速递 / 正文
成果速递
An Intelligent Financial Fraud Detection Support System Based on Three-Level Relationship Penetration
    发布日期:2024-07-16       阅读次数:
Abstract:Financial fraud is a serious challenge in a rapidly evolving digital economy that places increasing demands on detection systems. However, traditional methods are often limited by the dimensional information of the corporations themselves and are insufficient to deal with the complexity and dynamics of modern financial fraud. This study introduces a novel intelligent financial fraud detection support system, leveraging a three-level relationship penetration (3-LRP) method to decode complex fraudulent networks and enhance prediction accuracy, by integrating the fuzzy rough density-based feature selection (FRDFS) methodology, which optimizes feature screening in noisy financial environments, together with the fuzzy deterministic soft voting (FDSV) method that combines transformer-based deep tabular networks with conventional machine learning classifiers.The integration of FRDFS optimizes feature selection, significantly improving the system’s reliability and performance. An empirical analysis, using a real financial dataset from Chinese small and medium-sized enterprises (SMEs), demonstrates the effectiveness of our proposed method. This research enriches the financial fraud detection literature and provides practical insights for risk management professionals, introducing a comprehensive framework for early warning and proactive risk management in digital finance.

摘要中译:本研究围绕当前金融风险数字智能治理领域的关键技术问题,构建了一种新型的智能金融风险检测支持系统,并通过中国中小企业财务数据集验证了系统的有效性和准确性。研究为数字金融风险的数智治理实践提供了更全面的技术框架。


作者:Xiang Li , Lei Chu, Yujun Li, Zhanjun Xing, Fengqian Ding, Jintao Liand Ben Ma

文章来源:《Mathematics》2024, 12, 2195

Baidu
map